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Abstract 

Ortho-bis(fluorosilyl)benzenes, precursors for bis-siliconates, o-C6Hq(SiPhF2) 2 (1), o-C6H4(SiFa)(SiPh2F) (2) and o- 
C6Ha(SiPhF2)(SiPh2F) (3), possess anion binding properties as bidentate Lewis acidic hosts in organic solvents. Compound 1 
quantitatively binds a fluoride ion from KF suspended in acetone or tetrahydrofuran without support of 18-crown-6 to form the 
corresponding soluble bis-siliconate [o-C6H4(SiPhF2)2F]K (4). The binding constants of a series of fluorosilanes for a fluoride ion are 
measured by 1H and 19F NMR spectroscopies. The affinity of fluorosilanes towards a fluoride ion increases in the order PhMeSiF 2 
(7) < Ph2SiF 2 (9) < 3 < 1 < 2. The fluoride ion binding constant of 2 is estimated to be K > 1.1 × 109 M- ~ at 193 K. These bidentate 
Lewis acids 1-3 are among the strongest organic hosts for a fluoride ion in organic solvents ever reported. 
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I. Introduct ion  

In comparison with cation complexation by multiden- 
tate bases [1], the binding of anionic species by multi- 
dentate acids has been much less extensively studied 
(Scheme 1). However, the anion complexation by multi- 
dentate acids is of increasing interest recently in the 
whole field of chemistry. 

There are two types of host molecule for anion 
species so far reported: one is positively charged 
molecules and the other is the Lewis acidic multidentate 
molecules. The former type includes the encapsulation 
of halide anions by macrocyclic ammonium ions in 
aqueous media [2]. The latter type, the anion complexa- 
tion by bidentate or multidentate Lewis acid in organic 
media, had been studied only by a few groups but has 
recently begun to receive much attention. The pioneer- 
ing work relating to anion complexation, the chelation 
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of MeO- with a bidentate Lewis acid F2BCH2CH2BF2, 
was reported by Shriver and Biallas [3] in 1967. In the 
last few years, various types of multidentate Lewis acid 
have been reported, which contain B [4], A1 [5], Si [6], 
Ge [7], Sn [8], Ti [9], Fe [10], Co [11], Cu [12], Zn [13], 
Hg [14] and S [15]. They behave as host molecules not 
only for halides anions but also for neutral Lewis bases 
such as amines [4e,4f,13,14g] and carbonyl compounds 
[5,9,10,14b,14e]. 

We have recently reported the synthesis and struc- 
tural aspects of the novel pentacoordinate anionic bis- 
siliconates 4 - 6  (M +=  K ÷- 18-crown-6) which contain 
a fluoride ion chelated by two silyl groups, as evidenced 
by the X-ray structural analysis (Scheme 2) [16,17]. 
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Thus the precursors of bis-siliconates, ortho-bis(fluoro- 
silyl)benzenes 1-3, behave as bidentate Lewis acidic 
host molecules for a fluoride anion. This paper reports 
the details of the study on the anion binding properties 
of ortho-bis(fluorosilyl)benzenes (1-3). In this study, 
we have determined the equilibrium constants for the 
fluoride ion binding by ortho-bis(fluorosilyl)benzenes. 
Their Lewis acidities are compared with those of fluo- 
romonosilanes PhMeSiF 2 (7) and Ph2SiF 2 (9) (Scheme 
2). 

2. R e s u l t s  a n d  d i s c u s s i o n  

2.1. Anion binding 

Scheme 3 outlines the binding of a fluoride ion by 
ortho-bis(difluorophenylsilyl)benzene (1) when mixed 
with n-Bu4NF in tetrahydrofuran (THF). The formation 
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of 4 (M +-- n-Bu4 N÷) is readily detected by the 19F 
NMR spectroscopy at ambient temperatures and/or low 
temperatures as shown in Scheme 3. At ambient tem- 
perature, five fluorine atoms appear as one signal owing 
to the intramolecular exchange possesses [16]. The fluo- 
ride complex 4 shows no intermolecular fluoride ex- 
change with excess fluorosilane 1 on NMR time scale 
even at +45°C; the fluorine signals of 1 and 4 are 
observed separately. This is a sharp contrast with the 
fast equilibrium between [PhMeSiF3]-, K +. 18-crown-6 
(8) and excess PhMeSiF 2 (7) detectable even at -78°C 
by the laF NMR measurement. Thus the bidentate 
Lewis acidic host 1 binds the fluoride ion much more 
tightly than fluoromonosilanes. 

o-C6H4(SiPhF2) 2 (1) quantitatively captures a fluo- 
ride ion from potassium fluoride suspended in acetone-d 6 
without support of 18-crown-6 to form 4 (M ÷-- K+), 
while fluoromonosilane Ph 2 SiF 2 (9) forms the siliconate 
[Ph2SiFa]K (10) with less than 50% yield, as shown in 
Scheme 4. Thus host 1 appears to be a stronger Lewis 
acid than 9 for the capture of a fluoride ion in organic 
media. The result demonstrates that, since the concen- 
tration of the resulting 4 (M += K +) in acetone is 
5 × 10-] mol L -] , the host 1 solubilizes the sparingly 
soluble KF in acetone (solubility, 2 × 10 -4 mg L -] 
acetone = 4.3 × 10 -6 mol L-]  at 18°C) [18] by higher 
than 10 4 times. 

2.2. Fluoride binding constants 

The binding constants for a fluoride ion by bidentate 
fluorosilanes 1-3 in solution have been determined as a 
function of the number of fluorine atoms on silicon 
atoms by means of 1H and ]gF NMR spectroscopies. 
Since these binding constants were, however, too large 
to measure directly by NMR measurements, the binding 
constant of fluoromonosilane 7 was determined first and 
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then other binding constants were estimated by competi- 
tion experiments. Five experimental data are summa- 
rized in Scheme 5. 

2.2.1. Determination of  the fluoride binding constant for 
PhMeSiF 2 (7) (Scheme 5(a)) 

An acetone-d 6 solution of 7 was titrated with a dry 1 
M solution of n-Bu4NF in THF at 18°C. The chemical 
shifts of S i - C H  3 protons moved steadily from 8 = 
+0.533 ppm for the tetracoordinated PhMeSiF 2 (7) to 
8 = -0 .058 ppm for the pentacoordinated [PhMeSiF 3 ]- 
(8) (M += n-Bu4 N+) owing to a rapid intermolecular 
fluoride exchange between these two species. The 
chemical shifts were plotted against the molar equiva- 
lent of n-Bu4NF, as shown in Fig. 1. The binding 
constant of 7 for a fluoride ion could be calculated by 
the Benesi-Hildebrand [19] treatment to be K = 1.8 × 
103 M-i  at 291 K in acetone-d 6. 

2.2.2. Determination of  the fluoride binding constant for 
o-C 6 H4(SiPhF 2)(SiPh 2 F) (3) (Scheme 5(b)) 

The equilibrium constant between [PhMeSiF3]- (8) 
(M += K ÷. 18-crown-6) and host 3 was measured by 
following the chemical shifts of S i -CH 3 protons in 8 
upon titration with 3 in an acetone-d 6 solution at + 18°C, 
to be 3.3 × 102. The binding constant for complexation 
of a fluoride ion by host 3 is therefore calculated to be 
K = 5 . 9 × 1 0 5  M -1 

2.2.3. Determination of  the fluoride binding constants 
for o-C6H4(SiPhF2) 2 (1) (Scheme 5(c)), o-C6H 4- 
(SiF 3)(SiPh 2 F) (2) (Scheme 5(c)) and Ph 2 SiF 2 (9) 
(Scheme 5(b)) by the Z9F NMR spectroscopy at - 80°C 
to - 90°C 

The fluoride binding constant for 1 was determined 
by 19F NMR spectroscopy by titration of a solution of 
bis-siliconate [o-C6Ha(SiPhF2XSiPh2F)F]- (6) (M += 
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Fig. 1. The change in ] H NMR chemical shifts of the methyl protons 
in PhMeSiF 2 (7) upon titration with n-BuaNF in THF-dg. 

K ÷. 18-crown-6) in acetone-d 6 with host 1, to give an 
equilibrium mixture with host 3 and bis-siliconate [o- 
C6H4(SiPhF2)2F]- (4)(M ÷ =  K + • 18-crown-6); the 
NMR spectra in several stages are reproduced in Fig. 2. 

Upon addition of one equivalent of host 1, only the 
fluorine signals due to host 3 and bis-siliconate 4 were 
observed without residual 1 and 6 at - 9 0 ° C .  Thus the 
fluoride ion is transferred completely from bis-siliconate 
6 to host 1. We can therefore estimate the equilibrium 
constant between 1 and 3 to be greater than 102, and in 
turn the fluoride binding constant by host 1 is calculated 
to be about K > 5.9 × 107 M -  1 (at 183 K). In a similar 
manner, the fluoride binding constant for host 2 was 
determined by titration of  an acetone-d 6 solution of 
bis-siliconate 4 with host 2 in equilibration with host 1 
and bis-siliconate [o-C6H4(SiF3)(SiPh2F)F ]-  (5) (M ÷ 
= K ÷- 18-crown-6). According to ]9F NMR at - 80°C, 
the equilibrium constant between 2 and 1 is about 20 
based on the relative ratios of the species present upon 
addition of one equivalent of  host 2 (the spectra not 
shown here). Thus the binding constant of  host 2 is 
larger than that of  I and is estimated to be K > l. l X 109 
M -1 (at 193 K). The binding constant of Ph2SiF 2 (9) 
was also determined to be K = 1.5 × 104 M -I simi- 
larly by measurement of the equilibrium constant be- 
tween host 3 and [Ph 2 SiF 3 ]- (10) (M + K +. 18-crown-6) 
at - 85°C. 

In contrast, no reaction occurred when a solution of 
host 1 in acetone-d 6 was treated with an excess amount 
of n-BuaN+BF4 --, as observed by the 19F NMR mea- 
surement at - 80°C .  Thus the host 1 cannot take a 
fluoride ion from BF 4 ,  indicating that BF 3 possesses 

6 (M ÷ - K*.18-c-61 1 

K > 102 

i i  

r 
i 

3 4 (M + - ~<*.10-c-61 

CFCl3 (0 I:~m) 

J 1 

' l LI' J' ; l 

I i 

B 
t 

w ~ i f 

J j p i r ' ; ' ¢  

/ : : : 

° V 1' 

1 : 1.10 equiv 

1 : 0.91 equiv 

1 : 0.73 equiv 

1 : 0.37 equiv 

1 : 0  equiv 

I o " ~  . . . .  I . . . .  ' . . . .  -:'o! . . . .  ' . . . .  -,,oi . . . .  ~ . . . .  -5oi . . . .  , . . . .  - 8 o i ' " "  . . . .  -soot . . . . . . . . . . . .  i .11o i . . . .  -14ol . . . .  ~ . . . .  -16oi . . . .  PPNI . . . .  -leol 

Fig. 2. 19F NMR spectral change of bis-siliconate 6 at - 85°C upon addition of 0, 0.37, 0.73, 0.91 and 1.10 equivalents of host l.  
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CI~Sn(~'-(CI~-- Sn--Cl 
~'-.. (CH,)6 J 

11 
For F' ,  g = 1-2 x 104 M -t (ref 21). 

Finally, these ortho-bis(fluorosilyl)benzenes having 
the strong affinity for anion species such as a fluoride 
ion would be applicable to a wide range of anion 
complex systems. As one possibility, we have applied 
the host molecules 1-3 as the titration agent for deter- 
mination of the concentration of a fluoride ion in or- 
ganic media, i.e. the concentration of the commercially 
available THF solution of n-Bu4NF (see Section 3). 

much stronger Lewis acidity for a fluoride ion than host 
1 by more than 102 times. 

The results are summarized in Table 1, which con- 
tains the binding constants and the free-energy differ- 
ences. It should be noted that while data for 7 corre- 
spond to the direct binding with a " f ree"  fluoride ion, 
the other data have been obtained indirectly by the 
competition experiments between the "complexed" flu- 
oride ions and free hosts. Thus data other than 7 should 
be regarded as the lowest limits for the binding of a 
" f ree"  fluoride ion. In particular, the free energy differ- 
ences - A G  for 7 and 9 cannot be compared directly 
with each other, since the fluoride ion binding order 
7 < 9 is apparent from the two competition experiments 
in Scheme 5(b). As a whole, the fluoride binding ability 
thus increases in the order 7 < 9 < 3 < 1 < 2 < BF 3. 
The following three general tendencies may be deduced: 
(1) the bidentate Lewis acid silanes bind anionic species 
more tightly than monosilanes; (2) the anion binding 
ability of the bidentate silanes increases with an in- 
crease in the total number of fluorine atoms on silicon 
atoms; and (3) if the total numbers are same, the 
asymmetrically substituted compound is a stronger 
Lewis acid than the other as shown by the order 1 < 2. 
This tendency is consistent with the gas-phase Lewis 
acidities of fluorosilanes in the order Me3SiF < 
Me2SiF 2 < MeSiF 3 < SiF 4 < BF 3 determined by ion cy- 
clotron resonance spectroscopy, as reported by Murphy 
and Beauchamp [20a] and Larson and McMahon [20b]. 

Our bidentate silicon host 2 is more efficient than the 
known macrocyclic tin host molecule 11 whose binding 
constant is 1-2 x 104 M-l  between - 5 0  and 30°C and 
thus seems to have the highest binding ability for a 
fluoride ion in organic solvents among organic host 
molecules ever reported [21]. 

3. Experimental details 

3.1. General remarks 

~H and ]9F NMR spectra were recorded on a Varian 
VXR-200 spectrometer, operating at 200 MHz and 
185.15 MHz respectively. H chemical shifts are re- 
ported relative to Me4Si. t9F chemical shifts refer to 
CFC13(8(19F)  = 0 ppm) as an internal standard. Tem- 
perature calibration was accomplished by using a stan- 
dard methanol sample with a calibration error of 
+ 1.0°C. 

THF-d 8 and acetone-d 6 were purchased from CEA 
and Wako Pure Chemical Ind. Ltd. respectively. A 
solution of n-Bu4NF (1.0 M) in THF was purchased 
from Aldrich Chemical Co. and allowed to stand over 4 
,~ molecular sieves activated by heating to 250°C for 5 
h and cooled in vacuo. The preparation of ortho-bis(flu- 
orosilyl)benzenes 1-3 and the corresponding bis- 
siliconates 4 -6  have been reported in our previous 
paper [16]. Mono-siliconates 8 and 10 were prepared by 
the Damrauer-Darahey [22] method [23]. 

3.2. Determination of concentration of n-Bu4NF in 
tetrahydrofuran 

A solution of 0.105 mmol of 1 in 0.6 ml of acetone-d 6 
and 50/xl  of commercially available n - B u 4 N F  solution 
in THF were mixed. The [9F NMR spectrum at -80°C 
was recorded and the quantity of n-Bu4NF was deter- 
mined by the ratio of free host 1 to bis-siliconate 4 
determined by direct integration of both fluorine signals 
(free host 1, 8 =  -136.1 ppm (4F); bis-siliconate 4, 
8 = - 142.2 ppm (2F~q)). The transmitter was located at 

Table 1 
Order of the fluoride ion binding constants and free energy differences 

~ S i P h F 2  ~ S i P h F 2  ~ S i F 3  

PhMeSiF 2 < Ph2SiF 2 < < < 

-SiPh2F ~ -SiPhF 2 ~ -SiPh2F 
7 9 3 1 2 

log K 3.3 (291 K) 4.2 a (188 K) 5.8 a (183 K) > 7.8 = (183 K) > 9.0 a (193 K) 
- AG (kcal mol- l ) 4.4 3.6 a 5.0 a > 6.5 = > 6.7 a 

The lowest limit data (see text). 
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the midpoint of the two fluorine signals to guarantee 
that each signal received equal power. 

Shin-Etsu Chemical Co., Ltd., for a gift of phenyl- 
chlorosilanes. 

3.3. Measurement of  equilibrium binding constants of  
fluoride ion for 1-3, 7 and 9 

3.3.1. PhMeSiF 2 (7) 
In an NMR tube, fluorosilane 7 (0.112 mmol) was 

dissolved in 0.7 ml of THF-d 8 containing 0.1% tetra- 
methylsilane (TMS). After measurement of the initial 
chemical shift of the methyl protons, 8 = 0.553 ppm, 
aliquots of a 1.04 M THF solution of n-Bu4NF, the 
concentration of which was determined by the above 
method, were successively added via a microsyringe, 
and the NMR spectrum of each resulting solution was 
recorded. In all cases the methyl proton signal was 
observed at 18-20°C and the binding constant was 
determined by a Benesi-Hildebrand plot (Fig. 1). 

3.3.2. o-C6H4(SiPhF 2 )(SiPh 2 F) (3) 
Silicate [PhMeSiFa]-,K +. 18-crown-6 (8) (0.0315 

mmol) was dissolved in 0.6 ml of acetone-d 6 containing 
0.1% TMS. After measurement of the initial chemical 
shift of the methyl protons, 6 = 0.058 ppm, aliquots of 
a 0.740 M solution of host 3 in acetone-d 6 were succes- 
sively added via a microsyringe, and the equilibrium 
constant between host 3 and silicate 8 was determined 
in a similar manner as above. The binding constant for 
host 3 was calculated by multiplication of the equilib- 
rium constant by the binding constant of PhMeSiF 2 (7). 

3.3.3. o-C 6 H4(SiPhF 2 )2 (1), o-C 6 H4(SiF 3)(SiPh 2 F) (2) 
and Ph2SiF 2 (9) 

The binding constant for host 1 was determined as 
follows. Bis-siliconate 3 (0.168 mmol) was dissolved in 
0.6 ml of acetone-d 6 containing 0.3% CFC13. After 
measurement of the initial fluorine signals of bis- 
siliconate 3 ( 8 =  -126.6 ppm), aliquots of 0.626 M 
solution of host 1 in acetone-d 6 were successively 
added. 19F NMR spectra were recorded at -85°C (Fig. 
2) and the equilibrium constants were calculated by the 
integration ratio of fluorine signals [16]. The binding 
constant for host 2 was determined by the measurement 
of the equilibrium constant between bis-siliconate 1 and 
host 2 in a similar manner to the above. The binding 
constant for fluorosilane 9 was determined by the mea- 
surement of the equilibrium constant between siliconate 
10 and host 3. 
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